40,089 research outputs found

    Universal Scaling of the Neel Temperature of Near-Quantum-Critical Quasi-Two-Dimensional Heisenberg Antiferromagnets

    Full text link
    We use a quantum Monte Carlo method to calculate the Neel temperature T_N of weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for T > T_N. In a single-layer mean-field theory, \chi_s^{2D}(T_N)=(z_2J')^{-1}, where \chi_s^{2D} is the exact staggered susceptibility of an isolated layer, J' the inter-layer coupling, and z_2=2 the layer coordination number. With a renormalized z_2, we find that this relationship applies not only in the renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the quantum-disordered regime. The renormalization is nearly constant; k_2 ~ 0.65-0.70. We also study other universal scaling functions.Comment: 4 pages, 4 figure

    Towards understanding broad degeneracy in non-strange mesons

    Get PDF
    The spectroscopic regularities of modern empirical data on the non-strange mesons up to 2.4 GeV can be summarized as a systematic clustering of states near certain values of energy. It is getting evident that some unknown X-symmetry triggers the phenomenon. We review the experimental status of this symmetry and recent theoretical attempts put forward for explanation of broad degeneracy.Comment: Brief review, 16 pages, 1 figur

    A Practical Guide for X-Ray Diffraction Characterization of Ga(Al, In)N Alloys

    Full text link
    Ga(In, Al)N alloys are used as an active layer or cladding layer in light emitting diodes and laser diodes. x-ray diffraction is extensively used to evaluate the crystalline quality, the chemical composition and the residual strain in Ga(Al,In)N thin films, which directly determine the emission wavelength and the device performance. Due to the minor mismatch in lattice parameters between Ga(Al, In)N alloy and a GaN virtual substrate, x-ray diffraction comes to a problem to separate the signal from Ga(Al,In)N alloy and GaN. We give a detailed comparison on different diffraction planes. In order to balance the intensity and peak separation between Ga(Al,In)N alloy and GaN, (0004) and (1015) planes make the best choice for symmetric scan and asymmetric scan, respectively.Comment: 9 pages, 5 figure

    Local anaesthetic bupivacaine induced ovarian and prostate cancer apoptotic cell death and underlying mechanisms in vitro

    Get PDF
    Retrospective studies indicate that the use of regional anesthesia can reduce cancer recurrence after surgery which could be due to ranging from immune function preservation to direct molecular mechanisms. This study was to investigate the effects of bupivacaine on ovarian and prostate cancer cell biology and the underlying molecular mechanisms. Cell viability, proliferation and migration of ovarian carcinoma (SKOV-3) and prostate carcinoma (PC-3) were examined following treatment with bupivacaine. Cleaved caspase 3, 8 and 9, and GSK-3β, pGSK-3β(tyr216) and pGSK-3β(ser9) expression were assessed by immunofluorescence. FAS ligand neutralization, caspase and GSK-3 inhibitors and GSK-3β siRNA were applied to further explore underlying mechanisms. Clinically relevant concentrations of bupivacaine reduced cell viability and inhibited cellular proliferation and migration in both cell lines. Caspase 8 and 9 inhibition generated partial cell death reversal in SKOV-3, whilst only caspase 9 was effective in PC-3. Bupivacaine increased the phosphorylation of GSK-3β(Tyr216) in SKOV-3 but without measurable effect in PC3. GSK-3β inhibition and siRNA gene knockdown decreased bupivacaine induced cell death in SKOV-3 but not in PC3. Our data suggests that bupivacaine has direct ‘anti-cancer’ properties through the activation of intrinsic and extrinsic apoptotic pathways in ovarian cancer but only the intrinsic pathway in prostate cancer

    Steady-state MreB helices inside bacteria: dynamics without motors

    Full text link
    Within individual bacteria, we combine force-dependent polymerization dynamics of individual MreB protofilaments with an elastic model of protofilament bundles buckled into helical configurations. We use variational techniques and stochastic simulations to relate the pitch of the MreB helix, the total abundance of MreB, and the number of protofilaments. By comparing our simulations with mean-field calculations, we find that stochastic fluctuations are significant. We examine the quasi-static evolution of the helical pitch with cell growth, as well as timescales of helix turnover and denovo establishment. We find that while the body of a polarized MreB helix treadmills towards its slow-growing end, the fast-growing tips of laterally associated protofilaments move towards the opposite fast-growing end of the MreB helix. This offers a possible mechanism for targeted polar localization without cytoplasmic motor proteins.Comment: 7 figures, 1 tabl

    Adiabatic Quantum Search in Open Systems

    Get PDF
    Adiabatic quantum algorithms represent a promising approach to universal quantum computation. Whilst in a closed system these algorithms are limited by avoided level crossings, where the gap becomes exponentially small in the system size, their robustness in open systems remains unresolved. We study the dynamics in the proximity of such an avoided level crossing associated with the adiabatic quantum search algorithm in a quantum system that is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. At finite temperature, however, scattering processes render the algorithm inefficient and no quantum speedup can be achieved. Owing to the generic nature of our model, we expect our results to be widely applicable to other adiabatic quantum algorithms.Comment: Accepted version. 6 pages, 2 figures, 10 pages supplemental material

    Holographic classification of Topological Insulators and its 8-fold periodicity

    Full text link
    Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac hamiltonians with zero modes protected by the discrete symmetries of time-reversal, particle-hole symmetry, and chirality. Assuming the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the Periodic Table of topological insulators found by Kitaev and Ryu. et. al, without using topological invariants nor K-theory. In addition we find candidate Z_2 topological insulators in classes AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.Comment: 19 pages, 4 Table

    Casimir Invariants from Quasi-Hopf (Super)algebras

    Get PDF
    We show how to construct, starting from a quasi-Hopf (super)algebra, central elements or Casimir invariants. We show that these central elements are invariant under quasi-Hopf twistings. As a consequence, the elliptic quantum (super)groups, which arise from twisting the normal quantum (super)groups, have the same Casimir invariants as the corresponding quantum (super)groups.Comment: 24 pages, Latex fil

    Two-player quantum pseudo-telepathy based on recent all-versus-nothing violations of local realism

    Full text link
    We introduce two two-player quantum pseudo-telepathy games based on two recently proposed all-versus-nothing (AVN) proofs of Bell's theorem [A. Cabello, Phys. Rev. Lett. 95, 210401 (2005); Phys. Rev. A 72, 050101(R) (2005)]. These games prove that Broadbent and Methot's claim that these AVN proofs do not rule out local-hidden-variable theories in which it is possible to exchange unlimited information inside the same light-cone (quant-ph/0511047) is incorrect.Comment: REVTeX4, 5 page
    corecore